
ETI Measurement Locations

Craig Bakker and Rohan Punamiya

January 5, 2025

1 Introduction

1.1 Fisher Information Derivation

Let us assume that

• we have measurements at points i coming from sources at locations j

• we have a radiation kernel Aij mapping from j to i

• the signal measured at point i from any given source of strength sj at point j follows a Poisson
distribution with mean Aijsj

It then follows that

• the random variable Mi corresponding to the measurement at point i is Poisson distributed with a
mean of

∑
j Aijsj

• the Fisher information matrix corresponding to those measurements is

Ikl (K) =
∑
i∈K

AikAil∑
j Aijsj

(1)

The Fisher information matrix corresponding to a single measurement is

−E

[
∂2

∂sk∂sl
f (mi; s)

]
= −E

−mi
1(∑

j Aijsj

)2AikAil


=

1(∑
j Aijsj

)2AikAilE [mi]

=
1∑

j Aijsj
AikAil (2)

The Fisher information matrix of independent variables is the sum of the Fisher information matrices of
the separate variables, and for fixed (deterministic) sj values, the measurements at different locations
are independent.

Note that this matrix will always be symmetric and positive semi-definite (and therefore normal).

1



1.2 Optimization Formulation

The goal is to choose a subset of measurements points K ⊂ {1, . . . , N} , |K| = n < N (where N is the
number of sources) to maximize the amount of information provided by measurements at those points about
the sources sj (which essentially parameterize the distribution of measurements). This becomes something
like

max
K

rank (I (K)) (3)

which we can approximate using the nuclear norm ∥I (K)∥∗ or the stable rank:

∥I (K)∥2F
∥I (K)∥22

(4)

I would probably recommend the stable rank, as it encourages the optimization to find I with ap-
proximately equal singular values (as opposed to having one large singular value and many smaller ones).
Furthermore, the numerator is easy to calculate while the denominator is easy to approximate (e.g., via a
power method, which will benefit from the normality of I (K)).

Unfortunately, we do not know the values of sj . For the purpose of the optimization calculations, it
might make sense to set sj = 1 ∀j to consider the possibility of a source at any location. In principle, if we
were able to set a prior distribution on the sj values, We could calculate an expectation on I (K) based on
that prior distribution. Alternatively, with that information, we could use a Bayesian approach or try to
maximize the covariance matrix of M ; however, without distributions on sj , the covariance matrix of M is
diagonal.

This is essentially a combinatorial optimization problem, so if we are using non-gradient-based optimiza-
tion methods, we could just use matrix rank directly, but it may be useful to distinguish between matrices
with similar singular values and ones with widely-varying singular values. If we instead had a continuous
kernel Aj (x), and assuming that we are using the stable rank objective, this would become a continuous
optimization problem:

max
xi,i=1,...K

∥I (x)∥2F
∥I (x)∥22

(5)

Ikl (x) =
∑
i

Ak (xi)Al (xi)∑
j Aj (xi) sj

(6)

Let us assume that we have an ordering R (K) on the set K, indicating the order in which the points
are traversed, and let us further assume that we can calculate the travel cost associated with that ordering
C (R (K)). Then what we have is a multi-objective optimization problem:

max
K

∥I (K)∥2F
∥I (K)∥22

(7)

min
K,R

C (R (K)) (8)

Ikl (K) =
∑
i∈K

AikAil∑
j Aijsj

(9)

In principle, this could be solved as a nested optimization problem (with the travel cost on the inner
loop), but given the combinatorial nature of both R (K) and K, it might be more efficient to solve the
problem in its natural bi-objective form using a population-based metaheuristic optimization.

2



1.3 Single-Objective Integer Programming Problem

Let us formulate the measurement point selection problem using binary variables wi that indicate whether
measurement point i is selected, and let us ignore the travel cost objective:

max
wi

∥I (K)∥2F
∥I∥22

(10)

Ikl =
∑
i

wi
AikAil∑
j Aijsj

(11)∑
i

wi = n (12)

We can turn this into a continuous optimization problem using a few approximations or expansions:

∥I∥2F =
∑
k,l

(∑
i

wi
AikAil∑
j Aijsj

)2

(13)

∥I∥22 ≈
∥∥Ik+1ξ

∥∥2
2

∥Ikξ∥22
(14)

where ξ is a random vector, and k is chosen to get a sufficient level of convergence on the power method. If a
different ξ vector is chosen at each iteration of the optimization, this may slow down convergence, but it will
also help to make the optimization more robust to the approximation. We also make wi continuous but add
a penalty function ∥w∥1 =

∑
i wi – this encourages the optimization to force entries to 0. The optimization

then becomes

max
wi

∥∥Ikξ
∥∥2
2

∥Ik+1ξ∥22

∑
k,l

(∑
i

wi
AikAil∑
j Aijsj

)2

− ρ
∑
i

wi (15)

Ikl =
∑
i

wi
AikAil∑
j Aijsj

(16)∑
i

wi = n (17)

wi ≤ 1 (18)

wi ≥ 0 (19)

Alternatively, if we just want to plug the integer programming problem directly into, say, a branch-and-
bound method, we would have

max
wi

∥∥Ikξ
∥∥2
2

∥Ik+1ξ∥22

∑
k,l

(∑
i

wi
AikAil∑
j Aijsj

)2

(20)

Ikl =
∑
i

wi
AikAil∑
j Aijsj

(21)∑
i

wi = n (22)

wi ∈ [0, 1] (23)

It is also possible to simplify down the matrix powers of I by using the form provided above:

3



Ikl =
∑
i

wi

σi
AikAil (24)

σi =
∑
j

Aijsj (25)

[
I2
]
kl

=
∑
i,j

wiwj

σiσj
Aik

[∑
m

AimAjm

]
Ajl (26)

Bij =
∑
m

AimAjm (27)

[
I2
]
kl

=
∑
i,j

wiwj

σiσj
AikBijAjl (28)

I2xi =
∑
l

[
I2
]
kl
ξl

=
∑
i,j

wiwj

σiσj
AikBij

∑
l

Ajlξl (29)

[
I3
]
kl

=
∑
i,j,m

wiwjwm

σiσjσm
AikBijBjmAmp

=
∑
i,m

wiwm

σiσm
Aik

∑
j

wj

σj
BijBjm

Aml (30)

I3xi =
∑
l

[
I2
]
kl
ξl

=
∑
l

[
I3
]
kl
ξl

=
∑
i,m

wiwm

σiσm
Aik

∑
j

wj

σj
BijBjm

∑
l

Amlξl (31)

[
I4
]
kl

=
∑
i,p

wiwp

σiσp
Aik

∑
j,m

wjwm

σjσm
BijBjmBmp

Apl (32)

I4xi =
∑
l

[
I2
]
kl
ξl

=
∑
l

[
I4
]
kl
ξ

=
∑
i,p

wiwp

σiσp
Aik

∑
j,m

wjwm

σjσm
BijBjmBmp

Apl (33)

This should significantly reduce the computational cost, as I ∈ ℜN×N , whereas B ∈ ℜn×n, n ≪ N .

1.4 Other Options

Let Ã (K) be the matrix constructed from the rows of A corresponding to the elements of K.

• Condition number of Ã (K), κ
(
Ã (K)

)
.

– The goal is to minimize κ
(
Ã (K)

)
.

4



– In the pathological case where |K| = 1, κ
(
Ã (K)

)
= 1 for all K, which is not helpful. Since

κ
(
Ã (K)

)
≥ 1 ∀K, this means that a single measurement point is globally optimal (from this

perspective).

– κ
(
Ã (K)

)
= ∞ if the rows of κ

(
Ã (K)

)
are not linearly independent, which is something we

would want.

• Unobservability number of Ã (K), 1/σmin

(
Ã (K)

)
– The goal is to minimize 1/σmin

(
Ã (K)

)
.

– If A → cA, c > 1, then 1/σmin

(
Ã (K)

)
would decrease for all K, which may not be something

we want.

– In the pathological case where |K| = 1, a row with one entry of c + ϵ and the rest being zeros

would produce 1/σmin

(
Ã (K)

)
= 1/ (c+ ϵ), whereas a row with all entries being c/

√
N would

produce 1/σmin

(
Ã (K)

)
= 1/c.

• Minimal observability of Ã (K), omin

(
Ã (K)

)
= minj

∑
j Ã (K)ij .

– The goal is to maximize omin

(
Ã (K)

)
– This metric will be identically 0 for any Ã (K) with zero columns, so it may be flat for large parts

of the K space – it will not be able to distinguish between K and K ′ if both have a zero column.

• Stable Rank of Ã (K)

– This is going to be very similar to the stable rank of the Fisher information matrix. If Ã (K) has
singular values σi, then the stable rank is

∑
i

σ2
i

maxi σ2
i

(34)

– The Fisher information matrix is very similar to ÃT (K) Ã (K), and the stable rank of ÃT (K) Ã (K)
is

∑
i

σ4
i

maxi σ4
i

(35)

because this matrix is symmetric and positive definite, so its singular values are equal to its
eigenvalues, and its eigenvalues λi are equal to σ2

i . So this will likely produce similar results to
the stable rank of the Fisher information matrix.

• Quasi-Determinant of Ã (K) -
∏
i

σi

– Multiplying a vector by a matrix is analogous to taking a hypersphere and mapping it to a
hyperellipsoid with axes that have lengths corresponding to the singular values of the matrix.
The volume of that hyperellipsoid is proportional to the product of the singular values. In a
square matrix, the determinant is equal to the product of the eigenvalues.

– This means that any Ã (K) with less than full rank will produce a value of 0.

– This metric will generally encourage Ã (K) matrices with approximately equal σi values over
Ã (K) matrices with σi values that differ widely (as the stable rank approaches do) but in a
different way – perhaps more strongly.

5



2 Simultaneous Optimization – Updated Formulation with Stable
Rank

The basic optimization problem is

max
K,N

∥A (K)∥2F
∥A (K)∥22

(36)

K ⊂ {1, . . . , n} (37)

|K| = N < n (38)

where there are n total possible measurement points and A (K) is the submatrix of A formed by selecting
rows i ∈ K.

2.1 Option 1: Continuous Relaxation with Branch-and-Bound andMatrix Norm
Approximation

A (K) = diag (x)A (39)

max
x∈ℜn

∥diag (x)A∥2F
σ2
max

(40)

σ2
max =

∥diag (x)Aξ∥22
∥ξ∥2

(41)

N ≥
∑
i

xi (42)

0 ≤ xi ≤ 1 (43)

In this case, the x variables are a continuous relaxation of the binary measurement point selection,
ξ are random variables, and we approximate ∥diag (x)A∥ using a power method. There might be some
computational motivation to using the logarithm of this objective.

2.2 Option 2: Discrete Metaheuristic Optimization

Keep everything discrete and evaluate ∥A (K)∥ exactly (i.e., not via the power method approximation).
Represent the measurement points as nodes on a graph such that geographically neighboring points have
edges connecting them. That way, when a particular measurement point is perturbed, it is perturbed to a
proximate point. This kind of population based approach can then be used very naturally for identifying
the Pareto front in a multi-objective context.

max
x∈ℜn

∥diag (x)A∥2F
∥diag (x)A∥22

(44)

N =
∑
i

xi (45)

x ∈ {0, 1} (46)

The python package pymoo (https://pymoo.org/index.html) might be suitable for this, as it has a wide
range of metaheuristic optimization algorithms to choose from (e.g., NSGA-II, which is specifically designed
for multi-objective optimization problems), and it seems possible to customize the evolution process (e.g.,
crossover and mutation) for the agent population.

6



2.3 Option 3: Continuous Relaxation with MPEC solution approach

A (K) = diag (x)A (47)

max
x∈ℜn

∥diag (x)A∥2F
∥diag (x)A∥22

(48)

N ≥
∑
i

xi (49)

0 ≤ xi ⊥ 1− xi ≥ 0 (50)

In this case, the x variables are a continuous relaxation of the binary measurement point selection, and
their binary status is enforced by the complementarity constraints

0 ≤ xi ⊥ 1− xi ≥ 0 (51)

MPECs can be solved via successive NLP relaxations, and there are built-in methods for doing this
in pyomo: https://www.osti.gov/servlets/purl/1195764. The documentation about how to actually
use those built-in methods is not great. Basically, you set up the MPEC like a normal optimization (with
complementarity constraints), you use the following commands

from pyomo.mpec import *

from pyomo.opt import SolverFactory

opt = SolverFactory(’mpec_nlp’,executable=’ipopt.exe’)

opt.options[’epsilon_initial’] = 1e0

opt.options[’epsilon_final’] = 1e-6

and solve use results = opt.solve(mpec_temp) where mpec_temp is the pyomo MPEC model. You can
change the initial and final ϵ values as needed. Because this is a nonlinear optimization problem, it would
probably be a good idea to solve the problem several different times from different initial conditions.

The other difficulty has to do with calculating ∥diag (x)A∥22. Because we are already solving an MPEC,
we can incorporate the norm calculation as additional constraints on the problem. The norm calculation can
be described as

max
σ,y

σ (52)

0 =
(
BTB − σI

)
y (53)

1 = yT y (54)

The KKT conditions are

0 = 1− λT y (55)

0 = λT
(
BTB − σI

)
+ 2σy (56)

0 =
(
BTB − σI

)
y (57)

1 = yT y (58)

which we can simplify to

0 = σ +
1

2
λT
(
BTB − σI

)
λ (59)

0 = σ
(
BTB − σI

)2
λ (60)

7



So we would have

max
x∈ℜn,σ∈ℜ,λ∈ℜn

∥diag (x)A∥2F
σ2

(61)

N ≥
∑
i

xi (62)

0 ≤ xi ≤ 1 (63)

0 ≤ xi ⊥ 1− xi ≥ 0 (64)

0 = σ +
1

2
λT
(
BTB − σI

)
λ (65)

0 = σ
(
BTB − σI

)2
λ (66)

B = diag (x)A (67)

The KKT conditions for the norm calculation add more nonlinearity to the problem, but the norm
calculation should have a unique solution (at least with respect to σ), and thus the KKT conditions should
be necessary and sufficient. It may be worthwhile to test this out, though.

Alternatively, we could use tensorflow and embed the norm calculation directly into the objective. Man-
ually implementing a version of the NLP relaxation (in tensorflow) is sufficiently simple to make this a
possibility. The difficulty here is that tensorflow does not explicitly handle constraints.

A third alternative is to use Julia, which can handle the matrix norm calculation in the objective and pass
the necessary derivatives through to the optimizer. Manually implementing the successive NLP relaxations
of the MPEC is then straightforward and easy to do.

8


